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EXYJNDARYLAYER IN INCGMPRZSSIBLE FLUID*

By L. G. Loitsianskii

Among all existing methods of the approximate integration of
the differential equations of the laminar boundary layer, the most
widely used is the method based on the application of the momentum
equation (reference 1). The accuracy of this method depends on
the more or less successful choice of a one-parameter family of
velocity profiles. Thus, for example, the polynomial of the fourth
degree proposed by ?ohlhausen (reference 1) does not give velocity
distributions closely agreeing with actual values in the neighbor-
hood of the separation point, so that in the computations a strong
retardation of the separation is obtained as compared with experi-
mental results (reference 2). The more-accurate methods employed
in recent times (references 2 to 4) assume as a single-parsmeter
f~lli~yof profi~e~ the exact So].utions of sane special class of
flows with given simple velocity distributions on the edge of the
boundary layer (single term raised to a power, linear function).

The transition to the more complicated two- and more-parameter
fawilies of profiles would require, in addition to the momentum
e.~u.ation,the employment of other possible equations (for example,
the equations of energy (reference 5) and others (reference 6)).
A greater accuracy might also then be expected fcr relatively simple
velocity profiles that satisfy only the fundamental boundary con-
ditions on the surface of the body and on the edge of the boundary
layer. This second approach, however, as far as is known, has not
been considered except for very simple solution for the case of
axial flow past a plate (reference 7).

In the present paper, a solution is given of the problem of
the plane laminar boundary layer in an incompressible gas; the
method is based on the use of a system of equations of successive

moments (including that of zero moment, the momentum equation) of
the equation of the boundary layer. Such statement of the problem

l!pribli~he~yi~yetodIntegrirov~ia Uravnenii Laminarnogo po~ra-._
nichnogo Sloia v NeszhiriaemomC-aze.” Prikladnaya !4atematikai 14ek-
hanika, USSR, Vol. 15, no. 5, Oct. 1949, p. 515-525.
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complex system of equations, which, however, is easily
simple supplementary assumptions. The solution obtained

is given in closed form by very simple formulas and is no-less
accurate than the previously mentioned complicated solutions that
are based on the use of special classes of accurate solutions of
the boundary-layer equations.

1. Derivation of Fundamental System of Successive Moments of
Boundary-Layer Equation. The well-kno’wnequations of the stationary
plane laminar boundary layer in the absence of compressibility
have the form

2
?h.1 au au

‘s+v F=wJ’+u#

1 (1.1)

where U.(x,y) and V(X,y) are tine projections of the velocity at
a section of the bo’J.ndarylayer on the axial and transverse axes of
coordinates x and y, U(x) is a given longitudinal %“elocityon
the outer hounda~y U’ = dU/dx, and U is the kinematic coeffi-
cient of v~.scosity. When the equation of continuity is applied,
the first of equations (1.1) may be given t’hemore convenient form

a[o-d] + $ ~w-u.)] + U’(u-u) - u “(u-u)=oL(u,v) = ~
&y2

(1.2)

‘Theleft side of equation (1.2) is multiplied by
#

and
int~~rated ~’fi~hresPect to y frov.zero to infinity in the case
of an asymptotically im”inite layer or from zero to the outer
limit of the layer y = b(x) for the assumption of a layer of
finite thickness. In either case, the following expression is
obtained:

J

=,~

[

,8 -,6

L(u,v)’} dy = $ #u(U-u) dy +
J

# ~ [v(U-ujjdy +
o 0 0 ay

u’
J

yk(u-u) &y - u
J

yk~2(U-u) dy _ o

0 0 ayz -

(1.3)
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is assumed in this equation and in what follows that, in
the very rapid approach of the velocity difference U -u
as. y-+m, all integrals with the infinite upper limit ‘have

a finite value.

For k = O,

J’

*6

r

,5

d
Go

u(U-U) dy + U’ (U-u) dy=+
o

where the magnitude

(1.4)

(1.5’)

represents the friction stress on the surface of the body.

Equation (1.4), the well-known impulse or momentum equation,
is readily-transformed into its usual form-

@H$ + ul&(
—— (2+H) =T~
dx u pu

where

‘*=Jo(’-:)dy
pv,b

‘*’JO a+”

(1. s)

1(1.7)

For k = 1, a new equation of the ‘first moment’ is obtained
from equation (1.3)



;J5Ju(u-uy+u1Jm’’
(1.8)

and, in general, for kz 2, the equations of successively increas-
ing moments are obtained

s

=,b

J

-6

r

)Y

d
,kU.(U-U) d, - k #-%(U-u) dy+U’G #(U-u) d,

o 0 0

I

,5

= k(k-l)v +2(.-u) dy (1.9)
o

In all these equations, the transverse velocity v(x,y) is
assumed e~ressed in terms of the axial U(X,Y) from the equation
of continuity.

It is now assumed that the family of functions

u=tiO(x, y;~@~, . . . ,Ak) (1.10)

satisfies the boundary-conditions of the problem with k param-
eters Al, . . . , hkj which are functions of x, such that the

k successive moments of equation (1.3)

r-,6j3L(u0, VO) dy (1.11)
Uo

become zero. On the assumption
the limit 1{-~~, it would then

u(x,Y) = lim u“ [x, y;
~.-+=

that it is permissible to pass tc
be possible to state that the function

~(& A~(x), . . . ,Ak(x]

(1.12)

with parameters Al(x), h2(x), . . . , Ak(x) satisfying the infinite
s:;stemof e~,uations
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r*,E
J ;*L(uO, V“) dy = O (k = 0,1, 2,...)

G. . . . .

or, what is equivalent, system. (3..4),(1.El),and (1.9) will be em
exact solution of the fund~tientalsystem (1.1) for the assumed
boundary conditions.

For this solution, it is merely necessary to recall the known
theorem that a continuous function, all successive derivatives of
which are equal to zero, is identically equal to zero (reference 9).

:?.,i.
“f:, The question of the proof’of the validity of this theorem isy

not considered in the case of an infinite interval or of an inter-
val the boundaries of which are functions of a certain vsriable
with respect to which the differentiation is effected. A certain
construction, not based it is true on a rigorous proof, of the
so~lltion~jfthe n~-oble~.~,~illl)ee~.pl~yedwith the aid of the Suc-
cessive eq~~ationsof the moments of the basic boundary-lajer
equstiov..

2. Choice of l’arametersof Family of VelocitjrProfiles at Sec-
tions of Bcmmdsry Layer. Special Form of Equations of Moments.
As is seen from the previt;uslydiscussed considerations,the funda-
mental difficulty lies in the choice of a family of velocity pro-
files (1.10) and the determination cf the parameters Ak of the
family. One of the simplest methods of the sol~tion of this prob-
lem is indicatecl.herein.

In the converging part of the “coundarylayer, the velocity
pi-ofilesat various s>ctions of tinelayer are kno~ to be almost
sifi-dlar;the velocity profile is deforr,edmainly in the diffuser
part Gf the boundary layer downstream of the point of minimum pres-
sure. The deformation of the profile consists of the appearance
of a point of flexure tlnatarisss near the surface of the body snd.
then moves awaj~from it as the separation point is approached.

The presence of this deformation of the profile nesr the sur-
face should greatly affect the magnitude Tll proportional to the

,, normal derivative of the velociti~-on the surface of the bocj.yjit
will therefore diminish to zero as the point of separation is

,, appi-oached. The deformation of the profiie will have a smaller
effect on such integral magnitudes as ~+. 6** zpd Ve?y?r.d

- little ef’feet.cn magnitutiesth~t ccntaln under the :ntegral
sl.gnf’unlctj,cmt.hetrapidly decreasa as the surface of’‘tkL~ “t:ciy

is z.pprc~.che2.
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For the parameters characterizing the effect of the deforma-
tion of the velocity profile, it is natural to assume those magni-
tudes that depend relatively strongly on the deformation of the
velocity profile. ~Jithregard to the magnitudes that vary little
with the deformation of the velocity profile, however, it is natural
to assume that they do not depend on the chosen pszameters.

For the fundamental parameters determining a change in the
shape of the velocity profiles> which may be called form psrsmeters,
the nondimensional combination of the magnitudes Tw, 5* and 5**
will be er.ployed‘tiththe given functions U(x) and U’(x) and
physical constants, ncunely,the parameters

f = u’5**2
v

1

()
Tw~**

{=2m-
a(y/5**) y=~ ‘--m--

/

(2.1)

J
For the computation of the remaining magnitudes in the equa-

tion of moments according to the assumption, the velocity profile
will,be assumed in a section of the boundary layer in a form that
does not depend on the parameters f, ~, and H:

u

()
–=9* ‘v(v)‘J

(2.2)

This assumption permits, as will be subsequently seen, obtain-
ing on tinebasis of very simple computations a sufficiently accurate
solution of the bcmndsry-layer equations for arbitrary distribution
of the velocity on the edge of the layer. The transformation of
equation (1.6) will now he considered.

If the parameter ~ is introduced, then by equation (2.1),

m
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It is not difficult to obtain finally

+~~+f+’-%)f=c ‘2*3)

For the transformation of the left side of equation (1.8)
the first integral canbe writtenby equation (2.2) (q = y/!54)

J
@
yu(u-u)

0

where the magnitude ~17 equal to

(2.5)HI =

J

7T(1AT) dq

o

represents a constant computed by the given function Q(7).

In order to compute the following integral, the transverse
velocity v is first expressed by the formula

“=-l’y~dy=-+l’+
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There is thus obtained

or

(2.7)

1(2.8)

Finally, the last integral in equation (1.8) is transformed into

sa.

y(u-u) dy = H4U 8**2 (2.9)

o

where the constant H4 is equal to

(2.10)

——. -,.. .,- .,__ .-., . ., . ., . . . .. -------. ——
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13ysubstituting the integrals obtained in equation (1.8),

or by replacing &+2/V . f/U’ by equation
the tranafomation,

When the new constants

a=

b=

1(2H1+H3+E4)f +

are introduced,

1

H1 -~H~

2H~+H3+H4

H1-~ H2

the equation of the first moment is reduced

df _ ~ (a-bf) + $ f
x-u

(2.11)

(2.1) and carrying out

(2.12)

(2.13)

to the form

(2.14)

The third equation is obtained from the system (1.9) by setting
k=2.

There is obtained, as before,

Jy2u(U-u)dy
o

(2.15)

s H5U25**3 (2.16)
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where the constant I& IS equal to.

J

:0

H5 = ~zq(l-q)d~
o

Further, by analcgy with equation (2.7)

J

w

yv(U-u)dy = H6U28-2 ~ - H7UU‘5*3
o

where

I?ACATM 1293

(2.17)

(2.18)

(2.19)

The last integral on the left side of equation (2.15) is equal
to

!
y2(U-u)dy = H8U b*”x5

o
&3=f,2,+ (2.20)

The integnl in equation (2.15) on the right reduces to the
unkaown parameter H

By substituting the expressions obtained for the Integrals in
the second-moment equation (2.15), there is obtained, after simple
transfomati ens,

(2.22)
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The system of t’hreeequations (2.3), (2.14), and (2.22) has
thus been established for deteminlng tke three unknown magnitudes f,
~, and H. .The.solution cf this system is now considered.

3. ~~t~rmimtion of the Constants Hi. Approximate Formulas
for ~arameter~ f ~ and H. For the determination of the numeri-
cal values of the constants Hl, H2, . . ., H8, the form of the
function ~ (q) must be known. The simplest velocity profile in
the theory of the asymptotic boundary layer is the velocity profile
in the sections of the boundary layer of the flow past a plate.
Tinefunction q(q) for this case can easily be determined from
the generally known table of values of the velocity ratio u/U as
a fuaction of : . Y~~/2 .

Super’fluou.scomputations may be avoided by noting that the con-
smnbs to be computed are connected with one another by certain
simple relations.

First of all, frGm equations (2.3) and (2.14),

(3.1)

3jTsetting f’. G, there is obtained a . 2~0, where CO

denotes the ragnitude ~ ccmputed for the plate (U’ = 0, f = O).
From tha definition of ~ and from the known relations for the
plate,

(3.2)

Further, by coinpari~ with one another the magnitudes HI, H2,
H3, and H4,

H3.H~-H2 (3.3)

(3.4)
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where Ho is the value of H for f . 0, that is, the ratio IS*/5~

for a plate is equal, as is known, to

8* 1.721Ho= w=___= 2.59
0.664

It is then easy to obtain the value of b by equations (2.13),
(3.3), and (3.4).

2H1+H3+H4
b = = a

lH%-z 2

.
= %2a (4H1-ZH2+ ~ o ) = 4 + ~ H02 = 5.48= 5.5 (3.5)

\Jhen df/d~ is eliminated from equations (2.22) and (2.14),

H . (H5+H7+ $8) f + 3H5-2H5 [1 - (2H1+H3+H4) f]
4(H1-; Hz)

(3.6)

By setting f . 0,

‘o~ (3H5~2H6) . ~ . ~ %5.89 (3.7)

The only magnitude that must be computed again from the table
of values q(v) is the magnitude H5 + H7 + H8/2. Numerical inte-

gration gives

H5+H7++H8 = 24.73 (3.8)

after which there is immediately obtained

H = 2.59 - 7.55 f (3.9)
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Substituting this

t =

expression for H in equation (3.1) gives

0.22 + 1.85 f - 7.55 f2 . (3.10)

*.= ‘Fin&lQ”,‘integratingthe simple linear eg,u&tion(2.14) gives

(ax
P

f
aU’

J

~b-l
(g)dg

_ 0.44U’

J

U4.5
‘~ (E)M

o
735.5

0
(3.11)

Equations (3.9), (3.10)

The simple, approx~te
with the actual values. The
ues of f obtained with the
ally the only one that is applied)of the preceding works (refer-
ences 2 and 3) will be noted. The closed-form relation between ~
and f likewise differs little from the correspondingtabulated
functions in the references cited.

and (3.11) gfve the required solution.

solution just obtained is now compared
almost complete agreement of the val-
first approx-tion (which is practic-

For comparison, the curves ~(f) and H(f) obtained accord-
ing to the formulae of reference 2 and by the formulas (3.10) and
(3.9) are shown in figure 1. The results obtained will also be
compared with the formulas of Wright and Bailey (reference 9). An
approximate method of computation of the laminar boundary layer is
proposed therein In which the equation of momentum (1.6) is employed
with Tw and 5- substituted by the formulas for the flow past
a plate. By expressing the results of Wright and Bailey In the
parameters of the present report, the analogs of equations (3.9),
(3.10), and (3.11) are obtained.

H = 2.59
)

g = 0.22 + 4.09 f
}

(3.12)

J
It is easily seen that this formula for f corresponds to

equation (3.11) for b = 1. The straight lines for ( and H
showu dotted in figure 1 indicate the considerable deviation of
the formulas of Wright and Bailey from more accurate formulas
presented herein.

—
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For confirmation, the particular case of the laminar bountiy
layer corresponding to the so-called single-slope velocity distri-
bution at the outer boundary of the layer U = l-x will be con-
sidered. This case has been theoretically solved and an exact
solution in a tabulated form (reference 10) is available. The
results of the recomputation of these accurate solutions in the
form assumed by the parameters-are given in figure 2. Also shown
for comparison are the corresponding curves obtained by the pro-
posed approximate method and by the method of Wright and Bailey.

4. Possible Methods of Render~.ngthe Foregoing Solution More
Accurate. The method described in the preceding sections was based
on the assumption of a slight dependence of Hi on the form param-

eters f, ~, and H. This assumption may be eliminated and the
methcd rendered more accurate, although it thereby becomes con-
siderably more complicated.

In order to discuss the possible generalizations of the method,
the complete system of equations, for example, for the three-
parameter case is written out; that is, a three-parameter family
of velocity profiles is assumed in place of equation (2.2).

(4.1)

By substituting this velocity profile in the system of the
three equations of successive moments (1.6), (1.8) and (2.15),
there is obtained a system of three ordinary nonlinear differential
equations that determine the magnitudes of the parameters f) Cs
and H:

---+(waf+’f=’l~df
2 Ur dx

u,
=—

u
[1 - (2H1+H3+H4)f]+$ (H1-~H2) f

(4.2)

(4.3)



(4.4)

in which, in additfon to the previous notations, the following

(4.5)

15

Ill –..
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It is noted that, in the systemof equations (4.2), (4.3),
and (4.4), Hi and Ki are not constant magnltudea Y as pre-

viously, but known functions of the form Parroters f, {,,and H;
the form of these functions depends on the chosen family of
profiles (4.1).

The equations (2.3), (2.14), and (2.22) earlier employed evi-
dently represent a particular case of the system (4.2), (4.3), and
(4.4) on the assumption that the family of velocity profiles at
the different sections of the boundary layer has the form of equa-
tion (2.2); in other words, these profiles are similar to one
another. All values of Ki are of course then equal

Hi is constant=

The proposed methcilmay be rendered considerably
by assuming, for example, the single-parameterfamily
profiles

Then

K2 =

and the system
as follows:

of equations (4.2), (4.3) and (4.4) is

to zero and

more accurate
of velocity

(4.6)

o

transformed

‘2 ‘(KI+~)j&=;[1- (2Hl+H3+H4)f~+

:(H1-:H2)f

(4.7)

(4.8)

(4.9)
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Equation (4.8) can be given the form

df ~ I - (2Hl+H3+H4)f + ~tt HI-*H2
f

G=U F
H1-~ H2 + (K1+aH1/af)f -Hl- ~ H2 + (Kl+aH1/af)f

(4.10)

which represents a generalization of equation (2.12) where equa-
tion (4.1o) approximates equation (2.12) because of the small change
in Hi with change in the parameter f and the smallness of the

magnitude (Kl+aH1/af)f in comparison with Hl - H2/2. This gen-
eralization permits obtaining the integral of equation (4.10) by
introducing a correction to the solution of equation (2.12).

By dividing both sides of equation (4.Q) by the corresponding
sides of equation (4.8) and thus eliminating df/dx, there is
obtained

H . (H5+H7+* H8)f +

[1 - (2Hl+H3+H4)f] +

-[( )
( ;~~~ (3H5-2H6) + K4+–Uu,,

HI-*H2
U12

~H2 ‘k’+=? ‘ ‘i “H5-2H6)]f ~

Hl --

(4.11)

By similar considerations on the smallness of the magnitudes
(K4+l/2 aH5/*)f in comparisonwith (3H5-2H6)/4 and of

(K~+aH@f)f in comparison with HI - H2/2 and on the slight
variability of Hi, it may be concluded that the value of H
determined by equation (4.11) is an improvement in the accuracy of
the approximate value of H according to equation (3.6).

It may be remarked that in this more accurate approximation
there is no longer that universal relation between the parameters H
and f, independent of the form of the function U(x), character-
izing the given particular problem. The presence in equation (4.11)

I
--——.. . ....—- .-... .—..--— — —
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of a second term with the factor UU’’/2’2 shows that in the more
accurate ayproximatiorithe magnitude H in a given section of the
layer depends not only on the value of the form parameter f in
this section, as was the case in the rougher approximation of equa-
tion (3.5) or (3.9), but also on the value of the nmgnitude UU’’/2’2
in the section considered, that is, on the values of the func-
tion U(x) and its first two derivatives. It is readily observed
that the second term on the right side of equation (4.11) will
give a small correction to the solution (3.6) for relatively small
values of the magnitude ~*1/ut2*

The same considerations hold for the expression for ~, which
may be obtained by substituting df/dx from equation (4.10) and
H from equation (4.11) Into equation (4.7):

Zf

[

1 ( @ ‘!+~ (3H5-2H6)f +K4 +-+
24

+ (H5+H7+ * H8)f2-

uu4G:)f2[i+‘3H5-2H6)51-(K:+s9(H1-iHJf3
u?’ ( HI

HI -~H2+Kl+

(4.12)

As is seen, in this new approximation, in contrast to the pre-
ceding ,one,there is no universal relation ~etween { and f. The
presence of a term with the factor UU’’/U’ makes the magnitude ~
depend not only on the value of the parameter f but also on the
form of the function U(X) and its first two derivatives in the
given section of the boundary layer.

It ii of interest to remark that in this approximation the
position of the point of separation of the boundary layer, that is,
the value of x = xs for which ~ is equal to zero, will no
longer be determined by some un~versal value of the form parem-
eter fs, but in each Individual case the value of x = xs must

be determined for which the right side of equation (4.12) becomes
zero.
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By assuming a particular form of a family of velocity profiles
(4.6), employing, for example, the sets of velocity profiles
applied in the previous investigations (references 2 to 4), the
values of the functions Hi and Ki are determined; the form

Ptiameters f, ~, and’ H, that is, the thickness of the momentum
loss 8-, the friction stress ~w and the displacement thick-

ness” 8* may thenbe found without difficulty. The solution
of equation (4.10) and the determination of H and C by equa-
tions (4.11) and (4.12) offers no particular difficulty. Further
improvement in the accuracy requiring the solution of a system of
the type of equations (4.2), (4.3) and (4.4) is hardly of practical
interest.

In the previous discussion, the scheme of the asymptotically
infinite boundary layer was used, but similar equations may be
obtained also for the case where the boundary layer is assumed to
be of finite thickness.

The method here proposed may evidently also be applied to the
case of the thermal boundary layer. The characteristic feature of
the method for the cases of both the dynamic and the thermal bound-
ary layer lies in the fact that the friction stress and the quantity
of heat given off by a unit area of the body are expressed in inte-
gral form and not in terms of the derivatives of functions that
represent the approximate velocity and temperature distributions
in the sections of the boundary layer.

Translated by S. Reiss
National Advisory Committee
for Aeronautics.
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